Pre-Calculus Notes

The standard form of an exponential function is $f(x) = \underbrace{a \cdot b}_{\text{Any} \#} \underbrace{(2,3,...e)}_{\text{Any} \#} \underbrace{(2,3,...e)}_{\text{Where } a \neq 0 \text{ and } b > 0; b \neq 1.}$ Logarithmic functions have a standard form $f(x) = \underbrace{100 \times 0}_{\text{Any} \#} \underbrace{(2,3,...e)}_{\text{Where } a \neq 0 \text{ and } b > 0; b \neq 1.}$

Exponential and logarithmic functions are ________ of one another.

	Equation	Description
Vertical Translation (shift up/down)	y = f(x) + c OR $y = f(x) - c$	The function, $f(x)$, is shifted \underline{UP} (+) or \underline{dSUN} (-) by "c" units.
Horizontal Translation (shift left/right)	y = f(x + c) OR $y = f(x - c)$	The function, $f(x)$, is shifted <u>left</u> (+) or <u>right</u> (-) by "c" units.
Reflection	y = -f(x) OR $y = f(-x)$	The function, $f(x)$, is reflected over the X -axis $(-f(x))$ or the X -axis $(f(-x))$.
Vertical Stretch or Shrink	y = cf(x)	If $c > 1$; $f(x)$ Stretched vertically If $0 < c < 1$; $f(x)$ Shrunk vertically
Horizontal Stretch or Shrink	y = f(cx)	If $c > 1$; $f(x)$ _ Shrunk horizontally If $0 < c < 1$; $f(x)$ _ Stretched horizontally

Example 1: Given $f(x) = e^x$, describe all of the transformations that will occur between f(x) and g(x).

a)
$$g(x) = -e^x$$

Reflect over
X-axis

b)
$$g(x) = e^{-2x}$$

Reflect over y-axis
Horizontal Shrink by fuctor of 2

c)
$$g(x) = \frac{1}{4}e^{x+3}$$

Vertical Shrink by factor of 4
Left 3

d)
$$g(x) = -3e^{x-1} + 5$$

Reflect over X-axis
Vertical Stretch by factor of 3
Right 1
up 5

Example 2: Given $f(x) = \log x$, describe all of the transformations that will occur between f(x) and g(x).

a)
$$g(x) = \log 5x$$

Harizontal shrink by
factor of 5

b)
$$g(x) = -\frac{1}{2} \log x$$

Reflect over X-axis
Vertical shrink by factor of 2

c)
$$g(x) = \log(-x) - 4$$

Reflect over y-axis
Down 4

d)
$$g(x) = \log(-5x + 2)$$

Reflect over y-axis
Horizontal shank by factor of 5
Left 2

Example 3: Given $f(x) = 2^x$, write the equation for the transformed function, g(x).

a) Transform f(x) by shifting up 10 units and reflecting over the x-axis.

b) Transform f(x) by shifting left 8 units, horizontally stretching by a factor of 3 and reflecting over the y-axis.

$$f(x) = 2^{-\frac{1}{3}x+8}$$

Given the following f(x) and g(x) equations, determine all transformations that occur between the two.

1.
$$f(x) = 3^x$$

a)
$$g(x) = -(3^x)$$

Reflect Over X-axis

b)
$$g(x) = 3^{2x}$$

Harizontal Shrink
by 2

$$2. \ f(x) = \log_2 x$$

a)
$$g(x) = \log_2(-x - 4)$$

Reflect over y-axis
Right 4

b)
$$g(x) = \frac{1}{2}\log_2 x + 6$$

Virtical Shrink by 2
Up 6

$$3. f(x) = e^x$$

a)
$$g(x) = e^{-0.5x} - 1$$

Reflect over y-axis
Hirzantal stretch by 2
Down 1

b)
$$g(x) = -3e^{x+8}$$

Reflect over x-axis
Virtical stretch by 3
Left f

$$4. \ f(x) = \ln x$$

a)
$$-\ln(\frac{1}{5}x+2)-7$$

Reflect over X-axis
Hor: zontal Stretch by 5
Left 2
Down 7

b)
$$-4\ln(-x+2)$$

Reflect y-axis Vertical stretch by 4 Reflect X-axis Left 2

$$5. \ f(x) = 4^x$$

a)
$$g(x) = -2 (4^{x-1})$$

Reflect over X-axi3
Vertical Stretch by 2
Right 2

b)
$$g(x) = 4^{-0.25x} + 5$$

Reflect over y-axis
Horizontal stretch by 4
UD 5

- 6. Write an equation for the function that is described by the given characteristics.
- a) The shape of $f(x) = e^x$, but moved two units to the right and eight units down.

$$g(x) = e^{x-2} - 8$$

b) The shape of $f(x) = 4^x$, but reflected over the x-axis and vertically stretched by a factor of 6.

$$g(x) = -6(4^x)$$

c) The shape of $f(x) = \log x$, but moved 5 units up and reflected about the y-axis.

$$g(x) = \log(-x) + 5$$

d) The shape of $f(x) = \log_3 x$, but horizontally shrunk by a factor of 2 and shifted up 3 units.

e) The shape of $f(x) = 3^x$, but stretched vertically by a factor of 2, stretched horizontally by a factor of 2, shifted down 2 units, and left 2 units.

$$g(x) = 2(3^{1/2 \times +2}) - 2$$