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Logistic Exponential growth (from f(x)=ab*)is unrestricted
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BUT:

e Plants can only grow so big

e Only so many goldfish can fit into a bowl
So, some growth situations have limits. They begin
exponentially, but level out over time.

Logistic Functions (graphically)
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Whatdoesa | Logistic growth/decay formulas: L
logistic
function look c
: C
like? f(X) — or f(X) —
1+a-b” 1+g-e ™

> cis the limit to growth (a.k.a. “maximum sustainable
growth”) % hizental a5ympfpe¥

> o, b and ¢ are positive constants

> 1t b > 1 (or k > 0), the function represents logistic

growth
» If b <1, (or k <0}, the function represents logistic
decay

Determine the horizontal asymptotes and the y-intercept _

for each:
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Exponential and Logistic Modeling Name

1, On a college campus of 5000 students, one student returns from vacation with a contagious flu virus.
5000
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infected after t days. The college will cancel classes when 40% or more of the students are infected.

The spread of the virus is modeled by y = , t>0, where yis the total number of students

a. How many students are infected after 5 days? ‘t (5)
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b. After how many days will the college cancel classes? (qb'/o of svob = ?—005)
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2. Newton’s Law of Coolmg is represented by the equation T=C +(Ty — C)e

= , where

T = “final” temperature of a heated object
C = constant temperature of the surrounding medium (the ambient temperature)
To = initial temperature of the heated object
k = negative constant associated with the cooling object (unique to each scenario)
t =time (in minutes)
To
A pizza is taken from a 425°F oven and placed on the counter to cool. If the temperature in the kitchen
is 7€°F and the cooling rate for this type of pizza is k = 0.35,

a. What is the temperature (to the nearest degree) of the pizza after 2 minutes?
T=15+ (uss-15)e™>¥ (D) TZ 9y60

b. To the nearest minute, how long until the pizza has cooled to a temperature below 90°F?
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c. If Matt and Tyler like to eat their pizza at a temperature of about 110°F, now many minutes should
they wait before they “digin”?

10 =15+ 3g0e > @bw Tmiaues )
35 = 350e"° 35¢ S
i 6—0-36%

-
In (Ib) -0 55
-2.303--0-35¢

el
—n.AE -0 25



3. Newton’s Law of Cooling applies equally well if the “cooling is negative”, meaning the object is taken from
a colder medium and placed in a warmer one. If a can of soda is taken from a 35°F cooler and placed in a
room where the temperature is 75°F, how long will it take the drink to warm up to 65°F? Use 0.031 for k.
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4. Wood products are classified according to their life span. There are four classifications: short (1 year),

medium short (4 years), medium long (16 years) and long (50 years). The percentage of remaining wood
100.3952
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products after t years for wood products with long life spans is given by y=

a. What is the decay rate?

b. What is the percentage of wood products remaining after 10 years?
l06.9952
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c. How long does it take for the percentage of remaining woo fproducts to reach 50%7?
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d. Explain why the numerator given in the model is reasonable.
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5. A hard-boiled egg at a temperature of 96°C is placed in 16°C water to cool. Four minutes later the

temperature of the egg is 45°C. Use Newton'’s Law of Cooling to determine when the egg will be 20°C.
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6. Fruit flies are placed in a half-pint milk bottle with a banana (for food) and yeast plants (for food and to
provide a stimulus to lay eggs). Suppose that the fruit fly population after t days is modeled by
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a. What is the maximum capacity of the milk bottle and the growth rate of the fruit flies?
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b. Determine the initial populatlon
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e. How long does it take for the population to reach half the maximum capacity?
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7. Teresa was late getting ready for a party, and the liters of soft drinks she bought were still at room
temperature (73°F) with guests due to arrive in 15 minutes. If she puts the bottles in her freezer at
-10°F, will the drinks be cold enough (35°F) by the time her guests arrive? Assume k = 0.031.
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