Ley

Common Exponential Functions (a.k.a. "Formulas")

Interest compounded annually (or population growth . . .)

$$A = P(1+r)^t$$

Interest compounded *n* times per year

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Interest compounded continuously

$$A = Pe^{rt}$$

Half-life

$$A = A_0(0.5)^t h^{t}$$

Example 1

Krysti invests \$2000 in an account with a 6% interest rate, making no other deposits or withdrawals. What will Krysti's account balance be after 15 years if the interest is compounded:

$$A = 2000 \left(1 + \frac{00}{2}\right)^{2.15}$$

c. Continuously?

Exponential	Modeling

Students will be able to apply exponential formulas

HPC/RPC

Example 2

Krysti invests \$2000 in an account with a 6% interest rate, making no other deposits or withdrawals. How long will it take for Krysti's account to be worth \$5000 if interest is compounded:

b. Continuously?

c. What interest rate would Krysti need in order for her account to be worth \$8000 after 20 years, if interest is compounded annually? Continuously?