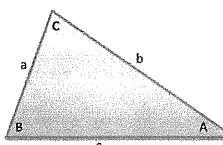
Precalculus


Students will learn to find the sides and angles of acute and obtuse triangles.

REY

What is the law of cosines?

Law of Cosines

Let Δ ABC be any triangle with sides and angles labeled as below:

$$a^2 = b^2 + c^2 - 2bc\cos A$$

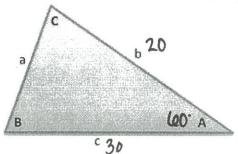
$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

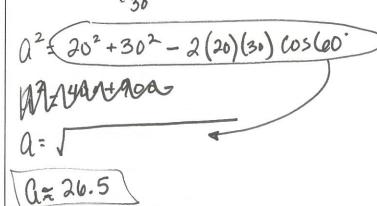
There are two cases in which the law of cosines can be used to find the missing sides or angles or a triangle.

How do you find the missing side and angles of a triangle when you know two sides and the included angle?

Case 1: Side-Angle-Side (SAS)


- 1. Use Law of Cosines to find the side opposite the given angle.
- 2. Use the Law of Sines to find the angle opposite the shorter of the two given sides. This angle is always acute.
- 3. Find the third angle by using the fact that the sum of the angles of a triangle is 180°.

Precalculus


Students will learn to find the sides and angles of acute and obtuse triangles.

Example 1: Use the law of cosines to solve the triangle.

* Round angles to neavest whole

$$m\angle A = 60^{\circ}$$

 $b = 20$ $a = 26.5$
 $c = 30$ $A = 40.9^{\circ}$
 $A = 79.1^{\circ}$

Precalculus

Students will learn to find the sides and angles of acute and obtuse triangles.

How do you find the missing sides of a triangle when you know the angles of the triangle?

Case 2: Side-Side (SSS)

- 1. Use Law of Cosines to find the angle opposite the longest side.
- 2. Use the Law of Sines to find either of the two remaining acute angles.
- 3. Find the third angle by using the fact that the sum of the angles of a triangle is 180°.

Example 2: Use the law of cosines to solve the triangle.

B
$$c = 9 \quad A = 127.2^{\circ}$$

$$b = 6 \quad B = 32.1^{\circ}$$

$$c = 4 \quad (= 20.7)$$

$$(180 - 127.2 - 32.1)$$

$$Q^{2} = 4^{2} + (e^{2} - 2(4)(6) \cdot \cos A)$$

$$81 = 16 + 36 - 48 \cos A$$

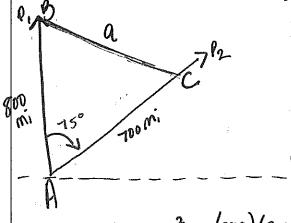
$$2q = -48 \cos A$$

$$\frac{2q}{48} = \cos A$$

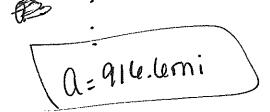
$$\frac{-2q}{48} = \cos A$$

$$Cos^{-1} \left(\frac{-2q}{48}\right) = A$$

$$B = 32.1^{\circ}$$


$$127.2^{\circ} = A$$

Day 1 Assignment


Precalculus

Students will learn to find the sides and angles of acute and obtuse triangles.

Example 3: Two planes leave an airport at the same time on different runways. One flies directly north at 400 mph. The other airplane flies on a bearing of N75°E at 350 mph. How far apart will the planes be after two hours?

Q2 = 8602 + 7002 - 2 (800) (700) C0575

Precalculus

Students will learn to find the sides and angles of acute and obtuse triangles.

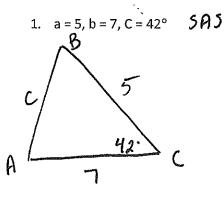
Herron's Formula

If a, b, and c are the sides of Δ ABC, and s is the semi-perimeter

$$S = (a+b+c)/2$$

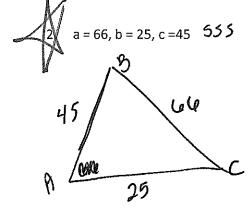
Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Example 4: Find the area of a triangle with the sides 9, 13, and 17.


$$A = \sqrt{19.5(19.5-9)(19.5-13)(19.5-17)}$$
 $S = \frac{9+13+11}{2}$

A = 58 u2

Day 2 Assignment

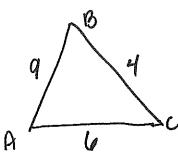

Law of Cosines Assignment - Day 1

Using the dimensions given sketch the triangle determine which case of <u>Law of Cosines</u> is applicable. Then solve the triangle. (Round dimensions to the nearest tenth.)

$$C^2 = 5^2 + 7^2 - .2(5)(1) \cdot cos 42$$

$$\frac{8.00}{7} = \frac{8.042}{4.7}$$
 $\frac{8 = 85.3^{\circ}}{C = 52.7^{\circ}}$

$$|66|^{2} = 25^{2} + 45^{2} - 2(25)(45) \cdot CosA$$


$$|1706| = -2250 \cdot CosA$$

$$-\frac{1704}{2250} = (OsA)$$

$$|139|^{\circ} = A$$

3.
$$b = 4$$
, $c = 1$, $A = 100^{\circ}$ SAS

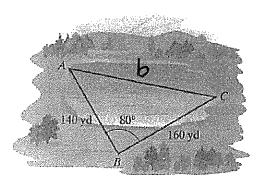
$$0^2 : 1^2 + 4^2 - 2(1)(4) \cdot \cos 100$$

Law of Cosines Assignment - Day 2

Use Herron's formula to find the area of each triangle. (Round dimensions to the nearest tenth.)

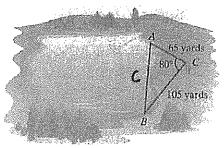
1.
$$a = 4$$
 feet, $b = 4$ feet, $c = 2$ feet

2. a = 16 meters, b = 10 meters, c = 8 meters

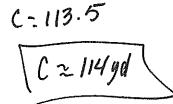

3. a = 13 yards, b = 9 yards, c = 5 yards

$$S = \frac{13+9+5}{2} = \frac{27}{2} : 13.5$$

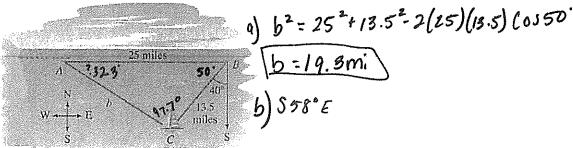
$$A = \sqrt{\frac{27}{2}(\frac{27}{2} - 13)} \left(13.5 - 9\right) \left(13.5 - 5\right)$$


Solve.

4. Find the distance across the Lake from A to C, to the nearest yard , using the measurements shown in the figure. SAS $b^2 = 140^2 + 160^2 - 2(140)(160) \cdot (0580^\circ)$



6=193.44


5. To find the distance across a protected cove at a lake, a surveyor makes the measurements shown in the figure. Use these measurements to find the distance from **A** to **B** to the nearest yard.

(2=652+1052-2(45)(105)C0580.

- 6. You are on a fishing boat that leaves it pier and heads east. After traveling for 25 miles, there is a report warning rough seas directly south. The captain turns the boat and follows a bearing of S40°W for 13.5 miles.
 - a. How far are from the boats pier?
 - b. What bearing could the boat have originally taken to arrive at this spot?

